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Preface

John Tukey (1915–2000) was one of the most prominent (and quotable) statisticians
of the last half of the twentieth century. He was once asked what he especially en-
joyed about the profession he chose for his life’s work. “The best thing about being
a statistician,” he said without hesitation, “is that you get to play in everyone’s back-
yard.” That sentiment says much about Tukey’s well known eclectic interests; it also
speaks to what this book is all about.

Our hope is that this text satisfes two objectives: 1) It introduces the basic tech-
niques of probability and mathematical statistics in a comprehensive and interesting
way at a level appropriate for students who have completed three semesters of cal-
culus, and 2) it provides students with the skills and insights necessary to apply those
principles. In our opinion, satisfying (1) but not (2) would be an inadequate “take-
away” for a student’s two-semesters worth of time and effort.

It may seem that completing Objective 1 automatically confers on students the
wherewithal tomeetObjective 2. Not so.Mathematical statistics deals primarily with
the nature of individual measurements or simple properties calculated from samples
of measurements—means, variances, distributions, relationships to other measure-
ments, and so on. Analyzing data, though, requires an additional knowledge of the
experimental design to which an entire set of measurements belong. To borrow some
terminology from economists, mathematical statistics is much like the micro aspect
of the subject; experimental design is the macro aspect. There is enough time in a
two-semester course to do justice to both.

Experimental designs come in many variations, but eight are especially impor-
tant in terms of the frequency of their occurrence and their relationship to the math-
ematical statistics covered in a frst course. The initial step in teaching someone how
to analyze data is helping them learn how to recognize those eight “data models”:
One-sample data, Two-sample data, k-sample data, Paired data, Randomized block
data, Regression/Correlation data, Categorical data, and Factorial data. We believe
that mentioning them in passing is not suffcient. They need to be compared and de-
scribed, altogether in one chapter, side-by-side, and illustrated with real-world data.

Identifying data models, of course, is not a diffcult skill to acquire. Anyone in-
volved in analyzing data learns it quickly. But for students taking their frst course in
statistics, ignoring the topic leaves themwithout a sense of where the subject is going
and why. Fully addressing the issue before students encounter all the Z tests, t tests,
χ2 tests, and F tests that come in rapid succession provides a very helpful framework
for putting all that material in context.

The fnal step in dealing with Objective 2 is to show the application of math-
ematical statistics and the methodologies it created to real-world data. Made-up or
contrived datawill not suffce. They do not provide the detail or complexity necessary
to point out, for example, why one particular design was used rather than another or
what to make of certain anomalies that appear to have occurred or what follow-up
studies seem to be warranted. For their help and obvious expertise, we are deeply in-
debted to all the researchers who have graciously allowed us to use portions of their
data to base the more than 80 Case Studies scattered throughout the text. We hope
these are as informative and helpful as the “backyards” that Professor Tukey found
so enjoyable.

viii



Preface ix

New to This Edition

• Chapter 15, Factorial Data, is a new, downloadable chapter describing the the-
ory and practice of the analysis of variance as it applies to factorial data. It
covers two-factor factorials, three-factor factorials, 2n designs, and fractional
factorials, all at the same mathematical level as the book’s other two treat-
ments of the analysis of variance, Chapter 12 and Chapter 13. This is the most
important of all the multifactor experimental designs.

• Chapter 2 contains ten new examples, including a repeated-independent-trials
analysis of the often-quoted “Caesar’s last breath” problem.

• Overall, the Sixth Edition contains 18 new Case Studies for additional concept
application.

• An Appendix has been added at the end of Chapter 4 summarizing all the
important properties of the most frequently used pdfs.

• Much of Section 5.2 dealing with parameter estimation has been rewritten, and
the margin of error portion of Section 5.3 has been completely redone.

• Discussions of the different data models in Chapter 8 have been expanded, and
an eighth model (factorial data) has been added. The chapter includes seven
new Case Studies.

• In Chapter 11, the section on nonlinear models has been thoroughly revised
with an emphasis put on their relationship to different laws of growth.

• Because of space and cost considerations, journals and technical reports often
display only summaries of an experiment’s results. A section has been added
to Chapter 12 showing how the entire ANOVA table for a set of k-sample data
can be “reconstructed” without knowing any of the individual measurements.

• The text companion website www.pearsonhighered.com/mathstatsresources/
has the online, downloadable Chapter 15 and data sets analyzed in the text,
in generic form to copy for input into statistical software. The site also has ad-
ditional resources to help students and instructors.
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1Introduction

CHAPTER
OUTLINE

1.1 An Overview
1.2 Some Examples
1.3 A Brief History
1.4 A Chapter Summary

“Until the phenomena of any branch of knowledge have been submitted to
measurement and number it cannot assume the status and dignity of a science.”

—Francis Galton

1.1 AN OVERVIEW
Sir FrancisGaltonwas a preeminent biologist of the nineteenth century.Apassionate
advocate for the theory of evolution (his nickname was “Darwin’s bulldog”), Galton
was also an early crusader for the study of statistics and believed the subject would
play a key role in the advancement of science:

Some people hate the very name of statistics, but I fnd them full of beauty and inter-
est. Whenever they are not brutalized, but delicately handled by the higher methods,
and are warily interpreted, their power of dealing with complicated phenomena is
extraordinary. They are the only tools by which an opening can be cut through the
formidable thicket of diffculties that bars the path of those who pursue the Science
of man.

DidGalton’s prediction come to pass?Absolutely—try reading a biology journal
or the analysis of a psychology experiment before taking your frst statistics course.
Science and statistics have become inseparable, two peas in the same pod. What the
good gentleman from London failed to anticipate, though, is the extent to which all
of us—not just scientists—have become enamored (some would say obsessed) with
numerical information. The stock market is awash in averages, indicators, trends,
and exchange rates; federal education initiatives have taken standardized testing to
new levels of specifcity; Hollywood uses sophisticated demographics to see who’s
watching what, and why; and pollsters regularly tally and track our every opinion,
regardless of how irrelevant or uninformed. In short, we have come to expect every-
thing to be measured, evaluated, compared, scaled, ranked, and rated—and if the
results are deemed unacceptable for whatever reason, we demand that someone or
something be held accountable (in some appropriately quantifable way).

To be sure, many of these efforts are carefully carried out and make perfectly
good sense; unfortunately, others are seriously fawed, and some are just plain
nonsense. What they all speak to, though, is the clear and compelling need to know
something about the subject of statistics, its uses and its misuses.

This book addresses two broad topics—themathematics of statistics and the prac-
tice of statistics. The two are quite different. The former refers to the probability the-
ory that supports and justifes the variousmethods used to analyze data. For themost

1



2 Chapter 1 Introduction

part, this background material is covered in Chapters 2 through 7. The key result is
the central limit theorem, which is one of the most elegant and far-reaching results in
all of mathematics. (Galton believed the ancient Greeks would have personifed and
deifed the central limit theorem had they known of its existence.) Also included in
these chapters is a thorough introduction to combinatorics, the mathematics of sys-
tematic counting. Historically, this was the very topic that launched the development
of probability in the frst place, back in the seventeenth century. In addition to its con-
nection to a variety of statistical procedures, combinatorics is also the basis for every
state lottery and every game of chance played with a roulette wheel, a pair of dice,
or a deck of cards.

The practice of statistics refers to all the issues (and there are many!) that arise in
the design, analysis, and interpretation of data. Discussions of these topics appear in
several different formats. Included in most of the case studies throughout the text is
a feature entitled ‘‘About the Data.’’ These are additional comments about either the
particular data in the case study or some related topic suggested by those data. Then
near the end ofmost chapters is a Taking a Second Look at Statistics section. Several of
these deal with the misuses of statistics—specifically, inferences drawn incorrectly and
terminology used inappropriately. The most comprehensive data-related discussion
comes in Chapter 8, which is devoted entirely to the critical problem of knowing how to
start a statistical analysis—that is, knowing which procedure should be used, and why.

More than a century ago, Galton described what he thought a knowledge of
statistics should entail. Understanding “the higher methods,” he said, was the key to
ensuring that data would be “delicately handled” and “warily interpreted.” The goal
of this book is to help make that happen.

1.2 Some Examples
Statistical methods are often grouped into two broad categories—descriptive statis-
tics and inferential statistics. The former refers to all the various techniques for
summarizing and displaying data. These are the familiar bar graphs, pie charts, scat-
terplots, means, medians, and the like, that we see so often in the print media. The
much more mathematical inferential statistics are procedures that make generaliza-
tions and draw conclusions of various kinds based on the information contained in
a set of data; moreover, they calculate the probability of the generalizations being
correct.

Described in this section are three case studies. The frst illustrates a very ef-
fective use of several descriptive techniques. The latter two illustrate the sorts of
questions that inferential procedures can help answer.

CASE STUDY 1.2.1

Pictured at the top of Figure 1.2.1 is the kind of information routinely recorded
by a seismograph—listed chronologically are the occurrence times and Richter
magnitudes for a series of earthquakes. As raw data, the numbers are largely
meaningless: No patterns are evident, nor is there any obvious connection
between the frequencies of tremors and their severities.

Shown at the bottom of the fgure is the result of applying several descrip-
tive techniques to an actual set of seismograph data recorded over a period of
several years in southern California (73). Plotted above the Richter (R) value of
4.0, for example, is the average number (N) of earthquakes occurring per year
in that region having magnitudes in the range 3.75 to 4.25. Similar points are
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Figure 1.2.1

included for R-values centered at 4.5, 5.0, 5.5, 6.0, 6.5, and 7.0. Now we can see
that earthquake frequencies and severities are clearly related: Describing the
(N, R)’s exceptionally well is the equation

N = 80,338.16e−1.981R (1.2.1)

which is found using a procedure described inChapter 11. (Note:Geologists have
shown that the model N = β0eβ1R describes the (N, R) relationship all over the
world. All that changes from region to region are the numerical values for β0
and β1.)

Notice that Equation 1.2.1 is more than just an elegant summary of the ob-
served (N, R) relationship. It also allows us to estimate the likelihood of future
earthquake catastrophes having values of R that have never been observed. On
the minds of all Californians, of course, is the Big One, the dreaded rip-roaring
10.5-Richter-scale monster megaquake that turns buildings into piles of rubble,
sends busloads of tourists careening into the San Francisco Bay, and moves the
intersection of Hollywood and Vine to somewhere in downtown El Segundo.
How often might an earthquake of that magnitude be expected?

Letting R = 10.5 in Equation 1.2.1 gives

N = 80,338.16e−1.981(10.5)

= 0.0000752 earthquakes/year
(Continued on next page)



4 Chapter 1 Introduction

(Case Study 1.2.1 continued)

so the predicted frequency would be once every 13,300 years (= 1/0.0000752).
On the one hand, the rarity of such a disaster has to be reassuring; on the other
hand, not knowing when the last such earthquake occurred is a bit unsettling.
Are we on borrowed time? What if the most recent megaquake occurred forty
thousand years ago?

Comment The megaquake prediction prompted by Equation 1.2.1 raises an
obviousquestion:Whyis thecalculationthat ledto themodelN = 80,338.16e−1.981R

not considered an example of inferential statistics even though it did yield a
prediction for R = 10.5? The answer is that Equation 1.2.1—by itself—does not
tell us anything about the ‘‘error’’ associated with its predictions. In Chapter 11, a
more elaborate probability method based on Equation 1.2.1 is described that does
yield error estimates and qualifies as a bona fide inference procedure.

About the Data For the record, the strongest earthquake ever recorded in
California occurred January 9, 1857 along the SanAndreas fault near Fort Tejon,
a sparsely populated settlement about seventy miles north of Los Angeles. Its
magnitude was estimated to be between 7.9 and 8.0. The state’s most famous,
deadliest, and costliest earthquake, though, occurred in San Francisco on April
18, 1906. It had a magnitude of 7.8, killed three thousand people, and destroyed
80% of the city. Over the years, a number of Hollywood movies featured that
particular earthquake as part of their storylines, the best known being San Fran-
cisco, a 1936 production starring Clark Gable and Spencer Tracy.

CASE STUDY 1.2.2

In folklore, the full moon is often portrayed as something sinister, a kind of
evil force possessing the power to control our behavior. Over the centuries,
many prominent writers and philosophers have shared this belief. Milton, in
Paradise Lost, refers to

Demoniac frenzy, moping melancholy
And moon-struck madness.

And Othello, after the murder of Desdemona, laments

It is the very error of the moon,
She comes more near the earth than she was wont
And makes men mad.

On a more scholarly level, Sir William Blackstone, the renowned
eighteenth-century English barrister, defned a “lunatic” as

one who hath . . . lost the use of his reason and who hath lucid intervals, some-
times enjoying his senses and sometimes not, and that frequently depending
upon changes of the moon.

The possibility of lunar phases infuencing human affairs is a theory notwith-
out supporters among the scientifc community. Studies by reputable medical
researchers have attempted to link the “Transylvania effect,” as it has come to
be known, with higher suicide rates, pyromania, and epilepsy (not to mention
the periodic unseemly behavior of werewolves . . .).

The possible relationship between lunar cycles and mental breakdowns has
also been studied. Table 1.2.1 shows one year’s admission rates to the emergency
room of a Virginia mental health clinic before, during, and after its twelve full
moons (13).
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Table 1.2.1 Admission Rates (Patients/Day)

Month Before Full Moon During Full Moon After Full Moon

Aug. 6.4 5.0 5.8
Sept. 7.1 13.0 9.2
Oct. 6.5 14.0 7.9
Nov. 8.6 12.0 7.7
Dec. 8.1 6.0 11.0
Jan. 10.4 9.0 12.9
Feb. 11.5 13.0 13.5
Mar. 13.8 16.0 13.1
Apr. 15.4 25.0 15.8
May 15.7 13.0 13.3
June 11.7 14.0 12.8
July 15.8 20.0 14.5

Averages: 10.9 13.3 11.5

Notice for these data that the average admission rate “during” the full moon
is, in fact, higher than the “before” and “after” admission rates: 13.3 as opposed
to 10.9 and 11.5. Can it be inferred, then, from these averages that the data sup-
port the existence of a Transylvania effect? No. Another explanation for the
averages is possible—namely, that there is no such thing as a Transylvania effect
and the observed differences among the three averages are due solely to chance.

Questions of this sort—that is, choosing between two conficting explana-
tions for a set of data—are resolved using a variety of techniques known as hy-
pothesis testing. The insights that hypothesis tests provide are without question
the most important contribution that the subject of statistics makes to the ad-
vancement of science.

The particular hypothesis test appropriate for the data in Table 1.2.1 is
known as a randomized block analysis of variance, which will be covered at
length in Chapter 13. As we will see, the conclusion reached in this case is both
unexpected and a bit disconcerting.

CASE STUDY 1.2.3

It may not be made into a movie anytime soon, but the way that statistical infer-
ence was used to spy on the Nazis in World War II is a pretty good tale. And it
certainly did have a surprise ending!

The story began in the early 1940s. Fighting in the European theatre was in-
tensifying, and Allied commanders were amassing a sizeable collection of aban-
doned and surrendered German weapons. When they inspected those weapons,
the Allies noticed that each one bore a different number. Aware of the Nazis’
reputation for detailed record keeping, the Allies surmised that each number
represented the chronological order in which the piece had been manufactured.
But if that was true, might it be possible to use the “captured” serial numbers to
estimate the total number of weapons the Germans had produced?

That was precisely the question posed to a group of government statisticians
working out of Washington, D.C. Wanting to estimate an adversary’s manufac-
turing capability was, of course, nothing new. Up to that point, though, the only
sources of that information had been spies and traitors; using serial numbers was
an approach entirely different.

(Continued on next page)



6 Chapter 1 Introduction

(Case Study 1.2.3 continued)

The answer turned out to be a fairly straightforward application of the prin-
ciples that will be introduced in Chapter 5. If n is the total number of captured
serial numbers and xmax is the largest captured serial number, then the estimate
for the total number of items produced is given by the formula

estimated output = [(n + 1)/n]xmax − 1 (1.2.2)

Suppose, for example, that n = 5 tanks were captured and they bore the serial
numbers 92, 14, 28, 300, and 146, respectively. Then xmax = 300 and the esti-
mated total number of tanks manufactured is three hundred ffty-nine:

estimated output = [(5 + 1)/5]300 − 1

= 359

Did Equation 1.2.2 work? Better than anyone could have expected (prob-
ably even the statisticians). When the war ended and the Third Reich’s “true”
production fgures were revealed, it was found that serial number estimates were
far more accurate in every instance than all the information gleaned from tradi-
tional espionage operations, spies, and informants. The serial number estimate
for German tank production in 1942, for example, was 3400, a fgure very close
to the actual output. The “offcial” estimate, on the other hand, based on intel-
ligence gathered in the usual ways, was a grossly infated 18,000.

About the Data Large discrepancies, like 3400 versus 18,000 for the tank esti-
mates, were not uncommon. The espionage-based estimates were consistently
erring on the high side because of the sophisticated Nazi propaganda ma-
chine that deliberately exaggerated the country’s industrial prowess. On spies
and would-be adversaries, the Third Reich’s carefully orchestrated dissembling
worked exactly as planned; on Equation 1.2.2, though, it had no effect whatso-
ever! (69)

1.3 A Brief History
For those interested in how we managed to get to where we are, Section 1.3 offers
a brief history of probability and statistics. The two subjects were not mathematical
littermates—they began at different times in different places by different people for
different reasons. How and why they eventually came together makes for an inter-
esting story, reacquaints us with some towering fgures from the past, and introduces
several others whose names will probably not be familiar but whose contributions
were critically important in demonstrating the linkage between science and statistics.

PROBABILITY: THE EARLY YEARS

No one knows where or when the notion of chance frst arose; it fades into our pre-
history. Nevertheless, evidence linking early humans with devices for generating ran-
dom events is plentiful: Archaeological digs, for example, throughout the ancient
world consistently turn up a curious overabundance of astragali, the heel bones of
sheep and other vertebrates. Why should the frequencies of these bones be so dis-
proportionately high? One could hypothesize that our forebears were fanatical foot
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fetishists, but two other explanations seem more plausible: The bones were used for
religious ceremonies and for gambling.

Astragali have six sides but are not symmetrical (see Figure 1.3.1). Those found
in excavations typically have their sides numbered or engraved. For many ancient
civilizations, astragali were the primary mechanism through which oracles solicited
the opinions of their gods. InAsiaMinor, for example, it was customary in divination
rites to roll, or cast, fve astragali. Each possible confguration was associated with
the name of a god and carried with it the sought-after advice. An outcome of (1, 3,
3, 4, 4), for instance, was said to be the throw of the savior Zeus, and its appearance
was taken as a sign of encouragement (37):

One one, two threes, two fours
The deed which thou meditatest, go do it boldly.
Put thy hand to it. The gods have given thee

favorable omens
Shrink not from it in thy mind, for no evil

shall befall thee.

Sheep astragalus

Figure 1.3.1

A (4, 4, 4, 6, 6), on the other hand, the throw of the child-eating Cronos, would send
everyone scurrying for cover:

Three fours and two sixes. God speaks as follows.
Abide in thy house, nor go elsewhere,
Lest a ravening and destroying beast come nigh thee.
For I see not that this business is safe. But bide

thy time.

Gradually, over thousands of years, astragali were replaced by dice, and the latter
became the most common means for generating random events. Pottery dice have
been found in Egyptian tombs built before 2000 b.c.; by the time the Greek civiliza-
tion was in full fower, dice were everywhere. (Loaded dice have also been found.
Mastering the mathematics of probability would prove to be a formidable task for
our ancestors, but they seemed quite adept at learning how to cheat!)

The lack of historical records blurs the distinction initially drawn between div-
ination ceremonies and recreational gaming. Among more recent societies, though,
gambling emerged as a distinct entity, and its popularity was irrefutable. The Greeks
and Romans were consummate gamblers, as were the early Christians (99).

Rules formany of theGreek andRoman games have been lost, but we can recog-
nize the lineage of certain modern diversions in what was played during the Middle
Ages. The most popular dice game of that period was called hazard, the name de-
riving from the Arabic al zhar, which means “a die.” Hazard is thought to have been
brought to Europe by soldiers returning from the Crusades; its rules are much like
those of our modern-day craps. Cards were frst introduced in the fourteenth cen-
tury and immediately gave rise to a game known as Primero, an early form of poker.
Board games such as backgammon were also popular during this period.



8 Chapter 1 Introduction

Given this rich tapestry of games and the obsession with gambling that char-
acterized so much of the Western world, it may seem more than a little puzzling
that a formal study of probability was not undertaken sooner than it was. As we
will see shortly, the frst instance of anyone conceptualizing probability in terms of a
mathematical model occurred in the sixteenth century. That means that more than
two thousand years of dice games, card games, and board games passed by before
someone fnally had the insight to write down even the simplest of probabilistic
abstractions.

Historians generally agree that, as a subject, probability got off to a rocky start
because of its incompatibility with two of the most dominant forces in the evolution
of our Western culture, Greek philosophy and early Christian theology. The Greeks
were comfortable with the notion of chance (something the Christians were not),
but it went against their nature to suppose that random events could be quantifed in
any useful fashion. They believed that any attempt to reconcile mathematically what
did happen with what should have happened was, in their phraseology, an improper
juxtaposition of the “earthly plane” with the “heavenly plane.”

Making matters worse was the antiempiricism that permeated Greek thinking.
Knowledge, to them, was not something that should be derived by experimentation.
It was better to reason out a question logically than to search for its explanation in a
set of numerical observations. Together, these two attitudes had a deadening effect:
The Greeks had no motivation to think about probability in any abstract sense, nor
were they faced with the problems of interpreting data that might have pointed them
in the direction of a probability calculus.

If the prospects for the study of probability were dim under the Greeks, they
became even worse when Christianity broadened its sphere of infuence. TheGreeks
and Romans at least accepted the existence of chance. However, they believed their
gods to be either unable or unwilling to get involved in matters so mundane as the
outcome of the roll of a die. Cicero writes:

Nothing is so uncertain as a cast of dice, and yet there is no one who plays often who
does not make a Venus-throw1 and occasionally twice and thrice in succession. Then
are we, like fools, to prefer to say that it happened by the direction of Venus rather
than by chance?

For the early Christians, though, there was no such thing as chance: Every event that
happened, no matter how trivial, was perceived to be a direct manifestation of God’s
deliberate intervention. In the words of St. Augustine:

Nos eas causas quae dicuntur fortuitae . . .non dicimus
nullas, sed latentes; easque tribuimus vel veri Dei . . .

(We say that those causes that are said to be by chance
are not non-existent but are hidden, and we attribute
them to the will of the true God . . .)

Taking Augustine’s position makes the study of probability moot, and it makes
a probabilist a heretic. Not surprisingly, nothing of signifcance was accomplished
in the subject for the next ffteen hundred years.

It was in the sixteenth century that probability, like a mathematical Lazarus,
arose from the dead. Orchestrating its resurrection was one of the most eccen-
tric fgures in the entire history of mathematics, Gerolamo Cardano. By his own
admission, Cardano personifed the best and the worst—the Jekyll and the Hyde—
of the Renaissance man. He was born in 1501 in Pavia. Facts about his personal life

1 When rolling four astragali, each of which is numbered on four sides, a Venus-throw was having each of the
four numbers appear.
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are diffcult to verify. He wrote an autobiography, but his penchant for lying raises
doubts about much of what he says. Whether true or not, though, his “one-sentence”
self-assessment paints an interesting portrait (135):

Nature has made me capable in all manual work, it has given me the spirit of a
philosopher and ability in the sciences, taste and good manners, voluptuousness, gai-
ety, it hasmademe pious, faithful, fond of wisdom,meditative, inventive, courageous,
fond of learning and teaching, eager to equal the best, to discover new things and
make independent progress, of modest character, a student of medicine, interested
in curiosities and discoveries, cunning, crafty, sarcastic, an initiate in the mysterious
lore, industrious, diligent, ingenious, living only from day to day, impertinent, con-
temptuous of religion, grudging, envious, sad, treacherous, magician and sorcerer,
miserable, hateful, lascivious, obscene, lying, obsequious, fond of the prattle of old
men, changeable, irresolute, indecent, fond of women, quarrelsome, and because of
the conficts between my nature and soul I am not understood even by those with
whom I associate most frequently.

Formally trained in medicine, Cardano’s interest in probability derived from his
addiction to gambling. His love of dice and cards was so all-consuming that he is
said to have once sold all his wife’s possessions just to get table stakes! Fortunately,
something positive came out of Cardano’s obsession. He began looking for a math-
ematical model that would describe, in some abstract way, the outcome of a random
event. What he eventually formalized is now called the classical defnition of prob-
ability: If the total number of possible outcomes, all equally likely, associated with
some action is n, and if m of those n result in the occurrence of some given event,
then the probability of that event ism/n. If a fair die is rolled, there are n = 6 possible
outcomes. If the event “outcome is greater than or equal to 5” is the one in which we
are interested, then m = 2 (the outcomes 5 and 6) and the probability of the event
is 2

6 , or
1
3 (see Figure 1.3.2).

1

3

5

2

4

6

Possible outcomes

Outcomes greater
than or equal to
5; probability = 2/6

Figure 1.3.2

Cardano had tapped into the most basic principle in probability. The model
he discovered may seem trivial in retrospect, but it represented a giant step forward:
His was the frst recorded instance of anyone computing a theoretical, as opposed to
an empirical, probability. Still, the actual impact of Cardano’s work was minimal. He
wrote a book in 1525, but its publication was delayed until 1663. By then, the focus
of the Renaissance, as well as interest in probability, had shifted from Italy to France.

The date cited by many historians (those who are not Cardano supporters) as
the “beginning” of probability is 1654. In Paris, a well-to-do gambler the Chevalier
de Méré asked several prominent mathematicians, including Blaise Pascal, a series
of questions, the best known of which is the problem of points:

Two people, A and B, agree to play a series of fair games until one person has won
six games. They each have wagered the same amount of money, the intention being
that the winner will be awarded the entire pot. But suppose, for whatever reason, the
series is prematurely terminated, at which point A has won fve games and B three.
How should the stakes be divided?




